Skip to main content

In Search of... Malt Complexity

I've placed a lot of malt-forward styles into competition in the last two years. These are styles that tend to appeal to me, such as the Dark Mild, Scottish Export, Extra Strong Bitter, and Dry Irish Stout. To be fair, I had brewed many of these styles for the very first time, and from recipes found on the Internet (which probably had good pedigrees, but who's to say). The fact that they did not do well may have boiled down to them being mediocre recipes to start with, or a lack of experience on my part brewing the styles, or the fact that I've changed brewing systems twice in the last two years. Regardless, a common comment from judges over the last three years of my brewing competition experience has been that some of my beers (not all, or even most) lacked malt complexity.

The first time I got that comment, I assumed that the judge meant that I hadn't used a good balance of specialty malts. When I tweaked the grist on one of those recipes and entered the next competition, the scores did improve a little. The comment cropped up more often this year, which convinced me that I needed to do a deeper dive into the subject.  If you're running into this same comment, what I'm about to share may help you, too.

Malt complexity can be impacted at each stage of the brewing process:
  • Recipe creation:  Choosing the right types of barley (and other grains) for the grist is important. Studying the BJCP criteria's list of ingredients and reviewing winning recipes for the style you're brewing can help here.
  • Mashing:  The mash process is all about breaking down proteins, starches, and sugars with enzymes present in the grain. Adding different mash rests rather than doing a single temperature rest can help alter the body, mouthfeel, and malt flavor complexity.
  • Boiling:  A rolling boil is important to kettle caramelization and driving off unwanted flavors like DMS. Lengthening the boil can help increase caramelization and deepen malt flavors, resulting in improved complexity.  It can also help to pull off a portion of the wort and boil it down very rapidly, then return it to the brew kettle.
  • Fermentation:  Choosing a yeast strain that accentuates malt flavors rather than hops can also improve the malt complexity of the finished beer. Depending on the style of beer you're making, there are usually several yeast strains available, each with differing impacts on the finished beer. You'll want to choose one that delivers what you're looking for.
I'm going to dive a little deeper into each of these areas.

Recipe Creation

There are a number of ways your recipe can impact the malt complexity and body:
  • There is a good list of barley variations and their impact on the beer here:
    https://www.brewcabin.com/malted-barley/
  • Base Malts: These form the background flavor of the beer.
    • Pilsner:  pale color and delicate flavor, perfect for lagers and pale ales
    • Pale Malts:  light color with biscuit and honey flavors
      • British pale malt tends to be darker but more flavorful
      • American two-row is between a pilsner and a British pale with honey and grain flavor
      • American six-row is great for starch conversion but less flavorful than two-row
    • Pale Ale Malts:  developed specifically for English-style Pale Ales. They are darker in color than pale malts
    • Vienna and Munich Malts: These are a foundation for beers that require sweet caramel flavors without dark colors
    • Extra-pale malts may display herbal notes and grassy or hay-like flavors and aromas
    • English pale ale malts like Maris Otter and Golden Promise develop a sharp, biscuity character that suits bitters and pale ales
    • North American "lager" malts often are very neutral and lack the character needed for some styles
    • Vienna malt brings out sweet, caramelly notes recognizable in a Vienna lager or Marzen
    • Munich malt brings sweet, toasty, cookie type flavors
  • Specialty Malts:  Depending on the style, you can add specialty malts, increase or decrease the amount of specialty malts, or choose malts from a different supplier to increase complexity.
    • Carapils/Dextrine malt will add body and head retention. Use as 5-20% of the grist in darker beers and 5-10% in lighter ones.
    • Some North American pale malts can give edgy or phenolic astringency
    • European malts often show more character and aroma
    • Pale malts in the 10 Lovibond range contribute sweet caramel, cotton candy, and honey notes
    • Malts in the 20 Lovibond range contribute some golden raisin flavors
    • Pale Ales and IPAs are often accented with some raisiny caramel malt, often with a mix of lager and pale malts, possibly with Vienna or Caramel 10L for sweetness
    • Lighter caramel malts tend to provide a beer's main flavor while darker varieties plan a supporting role. Dark crystal malts can overwhelm a beer's flavor.
    • Biscuit malt adds nutty, toasted biscuit flavors, like a more-intense Vienna malt
    • Amber malt is similar to biscuit, but has more complex flavors like toffee, nuts, and baked bread, and more bitterness
    • Brown malt has toffee, bready, nutty flavors but can dry out a beer if overused. It's best used in moderation to add complexity.
    • Chocolate malt offers a slight burnt flavor, coffee and chocolate aroma/flavor, and astringency
    • Black malt gives a deep color addition, but can add astringency unless it's huskless
    • Roasted barley isn't really malted, but adds roasted flavor
    • Acidulated (Acid) malt adds sour flavors, and a little can add sharpness and reduce mash pH.
    • Smoked malt is useful in some styles but can be overwhelming depending on the degree of smoke flavor
    • Peated malt is smoked using peat instead of wood. It's more for whiskey than beer, and some say it can make a beer taste like a Band-Aid bandage.
    • Wheat malt has a high protein content and can add a thicker, long-lasting head along with bready flavors
    • Rye malt adds a spicy flavor and works well with hops
    • Oat malt can fill out a beer's flavor and gives it a smooth mouthfeel. 
  • Maltodextrin can be added to enhance body
  • Lactose can add sweetness, body, and mouthfeel
  • Flaked Barley and oats should be less than 15% of your grist in most cases
  • If you're using a more-attenuating yeast strain, add proteins/dextrins to fill in the body
Mash Schedule Impacts

The mash schedule you follow for a brew can also impact the malt complexity:
  • Proteins break down in the 113-131F range at a pH between 5.1 and 5.3. Breaking these down will lighten the body of the beer and may impact head retention.
  • Starches break down into sugars best in the 150-162F range at a pH of 5.3 to 5.7.
  • According to one source, a few degrees Fahrenheit and a tenth of a pH point can make a world of difference in creating complex malt flavor.
  • Having at least two temperature rests in the saccharification range will make for a more complex beer.
  • If brewing with wheat, add a rest at 113F (ferulic acid rest) to bring out clove characteristics associated with wheat beers, and a saccharification rest in the mid-150F range.
  • If you're using a lot of specialty malts, mashing in at 140F and stepping into the mid-150's will facilitate fermentability while retaining body.
Boil Schedule Factors

Activity during the boil also impacts malt complexity:
  • Pilsners and wheat beers are generally boiled 60 minutes or less to maintain the light color
  • Scottish ales, porters, stouts, and other darker styles can be boiled up to 2 hours in order to get enough kettle caramelization, color, and complexity.
  • Varying your boil time as little as 15 minutes can make a difference, especially if you're maintaining a rolling boil. Try a two-hour boil to start, dialing it back if the effect is too intense. Some styles, like barleywines, may even boil up to 5 hours.
  • In general, the longer you boil, the more caramelization you'll have in the kettle and the more intense the malt flavors will be.
  • Use kettle caramelization for the right styles and dial in the right boil length for your setup.
  • You can concentrate a portion of the wort (improving caramelization and complexity) by pulling off a bit of it, boiling that down very hard (reducing volume by half) and adding it back to the kettle. This works well in styles like:
    • Bock
    • Doppelbock
    • Wee Heavy
    • Old Ale
    • Barleywine
    • Imperial Stout
    • Belgian Dark Strong Ale
Fermentation Factors

By the time you've reached the point of fermenting the beer, nearly all the heavy-lifting in terms of developing malt complexity has probably been achieved. Still you can tweak things further:
  • A less-attenuating yeast strain will leave behind malt sugars and increase the body of the finished beer.
  • Some strains emphasize malt flavors (like Scottish Ale strains) while others will bring out the hop flavors. Choosing a different strain can impact malt aroma and flavor.
  • Some fining agents reportedly lighten the body of the beer, so take care when using those. (I didn't find much specific detail on which fining agents do this.)
Incorporating this Information in Your Brewing

Learning and reading all this won't help much if I don't put some of it into practice to improve my brewing. Here's how I intend to start playing around with these suggestions to improve my beer:
  • Grain Bill:  For styles that need more body, I'll be looking to add oats, maltodextrin, Carapils/Dextrine malt, and/or Melanoidin, and mash at higher temperatures.
  • Mash: The Brewie+ and the PicoBrew Zymatic I used before that both make it fairly easy to implement multi-step mashes and keep them on track. I'll continue to play around with adding steps, lengthening or shortening some, etc., to try to improve body and complexity.  I think these automated systems seem to have trouble delivering a full-bodied beer, so I may need to compensate for this in the grain bill.
  • Boil:  The Brewie+ and the Zymatic both tend to boil below the 212F "true boil" temperature.  I regularly see the Brewie+ boiling in the 205-209F range. You would definitely not call it a rolling boil compared to some propane-fueled kettles (or even some stove tops) but there is a decent amount of roll to it.  Still, I'm considering drawing off and concentrating a portion of the wort on the kitchen stove as a way of boosting caramelization and possibly the body of the finished beer.  I'm also going to start lengthening the boil times on the theory that the lower boil temperature of the Brewie+ delivers less or "slower" caramelization in the kettle, and that extending the boil length will increase the caramelization overall.
  • Fermentation:  If all the above isn't getting me the results I want, I'll have to start experimenting with less-attenuating yeast strains to see if that helps.
As with many things in brewing, research and experimentation should help improve the beer.

I hope you've found this post useful and/or interesting.






Comments

  1. Thank you! I'm reformulating a well-scoring bitter to up malt complexity without deviating from the strong points. This is a great one-stop-shop post.

    ReplyDelete

Post a Comment

Popular posts from this blog

Brewing with The Grainfather, Part 1 - Mashing and Sparging

(Important note:  This article series is based on the US version of the product.  Prices are expressed in US dollars, measurements of temperature and volume are in US units unless otherwise noted.)

iMake's The Grainfather is an all-in-one RIMS brewing system designed to be used indoors with household electric current.  It includes the kettle, grain basket, recirculation tube, pump, electronic temperature controller, instruction book, and counterflow chiller.  It does not include a mash paddle, fermenter, cleaning supplies, or pretty much anything else.  The price is around $800-900 depending on where you shop and the discounts offered.

The Grainfather handles mashing, boiling, recirculating, sparging (to a degree), and chilling of the wort.  You'll still need a fermentation vessel of some sort and some other supplies we'll discuss later.

Grainfather Assembly and Initial Cleaning

Assembly of The Grainfather in my experience was pretty easy overall.  There were a couple of s…

Things I've Learned Brewing with The Grainfather, Part 2

In the last post, I shared an overview of The Grainfather, recommended equipment to use with it, and an overview of the brewing process.  In this installment, I'm going to talk specifically about mashing and sparging. Having brewed over a dozen batches with it, I'm finally becoming very comfortable with the device, the mash process, and how to get what I want out of it. I don't consider myself a "master" of it yet, though.

For those who have never done all-grain brewing, I want to provide a quick overview of the mash process itself.

Mashing - With or Without The Grainfather
The goal of mashing is to turn the starches in the grain into sugars. More specifically, you want to turn the starches into a mix of fermentable and unfermentable sugars that provide the flavor profile associated with the beer you are brewing. A sweeter beer might warrant more unfermentable sugars. A more dry beer will demand few unfermentable sugars.

To a great extent, controlling the amount o…

Brewing with The Grainfather, Part 3 - Cleaning and Overall Thoughts

In Part 1 of this series, I introduced The Grainfather and discussed how to use it for mashing and sparging.  In Part 2, we talked about boiling and chilling the wort with The Grainfather and its included counterflow chiller.  In this final segment, we'll discuss cleanup and overall thoughts about the device and its usage.

Cleanup

Once you've pumped the wort from The Grainfather into your fermenter and pitched your yeast, you're well on your way to a delicious batch of homebrew.  Unfortunately, you've still got some cleanup work to do.

The cleanup process in my experience will take 20-30 minutes.  It involves the following tasks:

Removing and discarding the grain from The Grainfather's grain basketCleaning the grain basket, kettle, recirculation tube, and wort chillerCleaning all the other implements used in brewing (scale, scoops, mash paddle, etc.) At the end of the brewing process, there will be hops bags (if you used them), grain and other residue, and usually so…