Skip to main content

How to Determine if Your Fermentation Temperature Control System Works

InkBird Temperature Controller I Use
If you've been home brewing for any length of time, you know the importance of maintaining an appropriate and consistent temperature during the fermentation of your beer.  The goal is to keep the beer within a temperature range that allows your yeast to work its magic without getting too hot (and thus generating off-flavors) or too cold (and going dormant before finishing the job).

I do all of my fermentation in my basement, which maintains a year-round temperature in the low-to-mid 60's (note:  all temperatures referenced in the post are in Fahrenheit unless otherwise stated).  I also have switched to only stainless steel fermenters, which I personally prefer to glass or plastic.

Fermwrap heater
A few months ago, I acquired a fermwrap heater ($23.99) and an Inkbird temperature controller ($38.99 or less when on sale periodically).  I'd been using these to keep my fermentation temperatures from getting too low, but worried that during vigorous fermentation that the yeast could be getting too hot.  I wondered if I needed to "up my game" by adding a fermentation chamber that could both heat and cool, or if the low ambient temperature in my basement (combined with the conductive properties of the stainless steel) might be enough to prevent overheating.

To test this, I purchased an inexpensive temperature monitor ($23.99) from Amazon.  This model had a probe that I could fit in the fermenter's thermowell along with the probe for the temperature controller.

To use this particular monitor, you begin by installing a battery in the monitor.  Then, install (Windows only, I think) software on your computer.  Attach the USB cable to the computer, and then to the temperature monitor.  The software allows you to specify the frequency with which readings are taken, the delay time before readings start, the temperature unit (Fahrenheit or Celsius) to be used, and a unique name to assign to readings taken by the monitor (e.g., "Pale Ale" or "Fermenter 1").  When you've finished gathering readings, the software also allows you to extract the data from the monitor and store it in Excel, PDF, Word, or Text formats for later use.  The monitor can store up to 16,000 readings in its internal memory.  This works out to about 11 days if readings are taken at one-minute intervals, longer if readings are taken at longer intervals.

I configured the monitor to take readings every minute, in Fahrenheit.

Elitech Temperature Monitor
Yesterday, I extracted the readings from the temperature monitor and saw what I hoped to see, depicted in the graph below:

The sawtooth pattern you're seeing here is a result of the temperature controller using the fermwrap heater to heat the beer to the 70F target temperature, followed by a cooldown of the fermenter toward the basement's ambient temperature.

You'll notice that about a quarter of the way through the chart that the temperature increases slightly. That's because I adjusted the controller to warm the fermenter a bit more, to hopefully help the yeast along.

You can also see near the right-hand side of the graph that there was a sudden drop in the readings.  This is was the day I transferred the beer to a secondary fermenter.  I disconnected the temperature probe and fermwrap while I transferred the beer to the secondary, so it showed a sharp drop because it wasn't in the fermenter anymore.  A while later, when I reinserted the probe into the secondary fermenter's thermowell, you see the temperature go back up.

The gradual drop-off at the end of the graph is the result of electing not to keep the fermwrap and controller plugged in during secondary fermentation. Over a few days, the temperature in the fermenter began dropping to the basement's ambient temperature of around 63F at the time.

What did I learn from this experiment?

  • For at least this particular recipe and yeast strain, the fermwrap, stainless steel, and cool basement air was more than enough to offset any heat generation by the fermenting yeast.  The fermentation temperatures during the monitoring period (2-3 weeks) never exceeded the target for longer than one minute (each measurement above represents one minute).  If this result holds true across multiple recipes and yeast strains, I may not need a fermentation cooling option for ale fermentation.
  • It takes my fermwrap 30 minutes to raise the fermenter temperature by 1 degree.  It takes the fermenter and ambient temperatures about an hour to drop it that same amount.
  • My temperature controller seems to work properly, keeping fermentation temperatures within the range I specified.  The temperature monitor also seems to be reading accurately, making it a useful tool for tracking fermentation temperatures.
  • At least for this particular fermentation, the fermwrap heater ran for one hour out of every three hours.  
Given that this is only a set of data for a single fermentation, I can't draw any general conclusions yet other than that it does appear that my temperature controller and fermwrap heater are doing the job they're designed to do. It will take additional testing to determine if these results are repeatable across other yeast strains and beer recipes.  If so, I won't need to invest the time and effort into a cooling option for ale fermentation.


Popular posts from this blog

Things I've Learned Brewing with The Grainfather, Part 2

In the last post, I shared an overview of The Grainfather, recommended equipment to use with it, and an overview of the brewing process.  In this installment, I'm going to talk specifically about mashing and sparging. Having brewed over a dozen batches with it, I'm finally becoming very comfortable with the device, the mash process, and how to get what I want out of it. I don't consider myself a "master" of it yet, though.

For those who have never done all-grain brewing, I want to provide a quick overview of the mash process itself.

Mashing - With or Without The Grainfather
The goal of mashing is to turn the starches in the grain into sugars. More specifically, you want to turn the starches into a mix of fermentable and unfermentable sugars that provide the flavor profile associated with the beer you are brewing. A sweeter beer might warrant more unfermentable sugars. A more dry beer will demand few unfermentable sugars.

To a great extent, controlling the amount o…

Brewing with The Grainfather, Part 3 - Cleaning and Overall Thoughts

In Part 1 of this series, I introduced The Grainfather and discussed how to use it for mashing and sparging.  In Part 2, we talked about boiling and chilling the wort with The Grainfather and its included counterflow chiller.  In this final segment, we'll discuss cleanup and overall thoughts about the device and its usage.


Once you've pumped the wort from The Grainfather into your fermenter and pitched your yeast, you're well on your way to a delicious batch of homebrew.  Unfortunately, you've still got some cleanup work to do.

The cleanup process in my experience will take 20-30 minutes.  It involves the following tasks:

Removing and discarding the grain from The Grainfather's grain basketCleaning the grain basket, kettle, recirculation tube, and wort chillerCleaning all the other implements used in brewing (scale, scoops, mash paddle, etc.) At the end of the brewing process, there will be hops bags (if you used them), grain and other residue, and usually so…

Brewing with The Grainfather, Part 1 - Mashing and Sparging

(Important note:  This article series is based on the US version of the product.  Prices are expressed in US dollars, measurements of temperature and volume are in US units unless otherwise noted.)

iMake's The Grainfather is an all-in-one RIMS brewing system designed to be used indoors with household electric current.  It includes the kettle, grain basket, recirculation tube, pump, electronic temperature controller, instruction book, and counterflow chiller.  It does not include a mash paddle, fermenter, cleaning supplies, or pretty much anything else.  The price is around $800-900 depending on where you shop and the discounts offered.

The Grainfather handles mashing, boiling, recirculating, sparging (to a degree), and chilling of the wort.  You'll still need a fermentation vessel of some sort and some other supplies we'll discuss later.

Grainfather Assembly and Initial Cleaning

Assembly of The Grainfather in my experience was pretty easy overall.  There were a couple of s…